Fundamental Counting Principle:
If one item can be selected in m ways, and for each way a second item can be selected in n ways then the two ways can be selected in mn ways.
Example 1:
How many different two digit numbers are there?
9 x 10 = 90
^ ^ 0,1,2,3,4,5,6,7,8,9 < these are your choices
1,2,3,4,5,6,7,8,9
Example 2:
A multiple-choice test has 7 questions, with 4 possible answers for each question. Suppose students answer each question by guessing randomly.
a) How many possible answers are there for each question?
4
b) How many different patterns are possible for the answers to the 7 questions on the test?
4 x 4 x 4 x 4 x 4 x 4 x 4 = 16384
c) What is the probability that all 7 questions will be answered correctly?
1/ 16384
No comments:
Post a Comment