Friday, October 1, 2010

Lesson 17- Geometric Sequences & Series

Geometric Sequences:

"multiplies"  ratio= r

Formula:
tn= ar^ n-1                  
r= multiplier
 tn = value   n= nth position
*note:  if you  want to find the multiplier  r= t2/a ( the 2nd number divided by the first)
Example 1:
In the following sequence: 2, 6, 18 54 .....  Find

a) t6                            b) t10          

r= 6/2=3                 = 2(3) ^ 9                
54x3= 162 t5          = 39366                     

162x 3= 484  t6                                   
                                                              
       c) which term is 9 565 938
            9565938 = 2(3)^ n-1               step1: divided by first number     
                   2                2                     step 2: log both sides  
            log 4782969 = (n-1) log3         step 3: isolate (n-1)
               log 3                      log3
                           14 = n-1                    step 4: solve
                           15 = n   
                 9565938 = t5

Series:
 A series is the sum of a sequence
S= add   t= find number

Formulas:
Sn = a(1 - r^n)         or        Sn = a- rl                            
           1 - r                                 1 - r         
  
    Sn: series ( sum)        r: ratio       l: last term> tn
    a: first #          n: how many terms there is

Example:
Find the sum of the series
5 + 15+ 45 +.......... + 885 735
Sn =  a - rl                             Sn= 5 - 3(885 735)
          1 - r                                        1 -3
                                                    =  1, 328, 600

No comments:

Post a Comment