Monday, September 27, 2010

Lesson 14- Logarithm Equations and Identities

Today's lesson had two methods for solving equations, log= # and log=log

Method 1: Log= #                                                                                                                                             
log2X = 3         1)  put into B^e = A form
2^3 = x
x= 8 

example2:
log3(x-4) = 2 + log3X
log3(x-4) = 2               1) put into B^e = A form
         x
3^2 = x-4              2) multiply both sides by x
            x
x(3^2) = (x-4/x)x       3) simplify
9x = x-4
8x= -4
x= -1/2  -- reject       
x= undefined 

*note: negative answers are tricky, they must become positive in original equation or are rejected.
       

Method 2: log = log                                                                                                                       
log5(x-3) + log5x = log5 10     1) create only one log
log5(x-3)x = log5 10            2) Drop logs
(x-3)x = 10
x^2 - 3x = 10
x^2 -3x -10 = 0
(x-5)(x+2)
x= 5, -2 -- reject ( negative does not work in eq'n.)
x=5


Identities:

Equation        vs.         Identity
2x+3 = 5                    x + x = 2x
x=1                            x = all real numbers
x= specific #                rejects allowed

Prove the identity and state the value(s) of x for which it is true:   ( make both sides equal)
  
logx + log(x +3) = log(x^2 +3x)
    LEFT SIDE           RIGHT SIDE

Left side:  logx(x+3)
               logx^2 + 3x = Right side
x must be great the 0     x>0


 

No comments:

Post a Comment