Fundamental Counting Principle:
If one item can be selected in m ways, and for each way a second item can be selected in n ways then the two ways can be selected in mn ways.
Example 1:
How many different two digit numbers are there?
9 x 10 = 90
^ ^ 0,1,2,3,4,5,6,7,8,9 < these are your choices
1,2,3,4,5,6,7,8,9
Example 2:
A multiple-choice test has 7 questions, with 4 possible answers for each question. Suppose students answer each question by guessing randomly.
a) How many possible answers are there for each question?
4
b) How many different patterns are possible for the answers to the 7 questions on the test?
4 x 4 x 4 x 4 x 4 x 4 x 4 = 16384
c) What is the probability that all 7 questions will be answered correctly?
1/ 16384
Thursday, January 13, 2011
Wednesday, January 12, 2011
Lesson 50 - 56
Lesson 50-51 : Identity package
Lesson 52- 56: Practice Tests, Corrections and Chapter Test
Lesson 52- 56: Practice Tests, Corrections and Chapter Test
Lesson 49 - Identities and double angles
Identities:
Sin( x + y) = sinxcosy + cosxsiny Cos ( x + y)= cosxcosy - sinxsiny
Sin( x - y) = sinxcosy - cosxsiny Cos ( x - y)= cosxcosy + sinxsiny
Double Angles:
Sin(2x) = Sin (x + x)
= sinxcosx + cosxsinx (like terms)
= 2sinxcosx > same as Sin(2x)
cos(2x) = Cos ( x + x)
= cosxcosx - sinxsinx cos^2x - sin^2
= cos^2x -sin^2x = cos^2x - (1 - cos^2x)
>> = 1 - 2sin^2x = cos^2x - 1 + cos^2x
>> = 2cos^2x - 1
Sin( x + y) = sinxcosy + cosxsiny Cos ( x + y)= cosxcosy - sinxsiny
Sin( x - y) = sinxcosy - cosxsiny Cos ( x - y)= cosxcosy + sinxsiny
Double Angles:
Sin(2x) = Sin (x + x)
= sinxcosx + cosxsinx (like terms)
= 2sinxcosx > same as Sin(2x)
cos(2x) = Cos ( x + x)
= cosxcosx - sinxsinx cos^2x - sin^2
= cos^2x -sin^2x = cos^2x - (1 - cos^2x)
>> = 1 - 2sin^2x = cos^2x - 1 + cos^2x
>> = 2cos^2x - 1
Lesson 48 - Conjugate Rule
Rules:
1) Identity/manipulation
2) sin/cos
3) complex fractions
4) Factor + Cancel
5) combine fractions
6) Conjugate Rule
Prove: sinx = 1 + cosx
1 - cosx sinx
LS = RS
sinx (1 + cosx) < multiply by the conjugate
(1-cosx) (1+ cosx)
sinx (1+cosx)
1- cos^2x
sinx (1+cosx)
sin^2x
1+ cosx = 1+ cosx
sinx sinx
Is Cos(x + y) = cosx + cosy
Cos (12 + 37) = Cos(12) + Cos(37) < Verify Numerically
Cos 49 = 0.97 + 0.80
0.66 = 1.78
NOT EQUAL!!!
You can proof graphically, algebraically, or numerically.
1) Identity/manipulation
2) sin/cos
3) complex fractions
4) Factor + Cancel
5) combine fractions
6) Conjugate Rule
Prove: sinx = 1 + cosx
1 - cosx sinx
LS = RS
sinx (1 + cosx) < multiply by the conjugate
(1-cosx) (1+ cosx)
sinx (1+cosx)
1- cos^2x
sin
1+ cosx = 1+ cosx
sinx sinx
Is Cos(x + y) = cosx + cosy
Cos (12 + 37) = Cos(12) + Cos(37) < Verify Numerically
Cos 49 = 0.97 + 0.80
NOT EQUAL!!!
You can proof graphically, algebraically, or numerically.
Wednesday, January 5, 2011
Lesson 42 - Proofs
Prove: tanx( tanx + cotx) = sec^2 x
Left side = Right side
tan^2x + tanx(cotx)
tan^2 +tanx(1/tanx)
tan^2x + 1
sec^2x sec^2x
LS = RS
Steps:
1) Manipulation
2) sin/cos
3) Fraction
4) combine fraction
5) fracor and cancel
6) LS = RS
Prove:
cscx - sinx = cosx(cotx)
LS = RS
1/sinx - sinx (sinx) cosx( cosx/sinx)
1 (sinx) cos^2x
1 - sin^2x sinx
sinx
cos^2x
sinx LS=RS
Left side = Right side
tan^2x + tanx(cotx)
tan^2 +
tan^2x + 1
sec^2x sec^2x
LS = RS
Steps:
1) Manipulation
2) sin/cos
3) Fraction
4) combine fraction
5) fracor and cancel
6) LS = RS
Prove:
cscx - sinx = cosx(cotx)
LS = RS
1/sinx - sinx (sinx) cosx( cosx/sinx)
1 (sinx) cos^2x
1 - sin^2x sinx
sinx
cos^2x
sinx LS=RS
Lesson 41 - Identities
Identities: Steps:
Cos^2x + sin^2x = 1 1) Manipulation
1+ tan^2x = sec^2x 2) Put everything in terms of sin/cos
cotx + 1= csc^2 x 3) complex fraction
Simplify:
csc^2x - cot^2x cosx + sinx
sinx(1/cosx) secx cscx
1
= tanx (cosx) cosx + sinx (sinx)
(cosx)1/cosx 1/sinx (sinx)
cos^2x + sin^2x
= 1
Cos^2x + sin^2x = 1 1) Manipulation
1+ tan^2x = sec^2x 2) Put everything in terms of sin/cos
cotx + 1= csc^2 x 3) complex fraction
Simplify:
csc^2x - cot^2x cosx + sinx
sinx(1/cosx) secx cscx
1
= tanx (cosx) cosx + sinx (sinx)
(
cos^2x + sin^2x
= 1
Subscribe to:
Posts (Atom)